Earth's Magnetosphere behaves like a Sieve

ESA’s quartet of satellites has discovered that Earth’s Magnetosphere behaves like a sieve in orbit, and that our protective magnetic bubble lets the solar wind in under a wider range of conditions than previously believed.

Above: Solar wind entry at low latitudes. Image credit: AOES Medialab



Earth’s magnetic field is very important, is our planet’s first line of defense against the bombardment of the solar wind. This stream of plasma is launched by the Sun and travels across the Solar System, carrying its own magnetic field with it.

Depending on how the solar wind’s interplanetary magnetic field – IMF – is aligned with Earth’s magnetic field, different phenomena can arise in Earth’s immediate environment.

One well-known process is magnetic reconnection, where magnetic field lines pointing in opposite directions spontaneously break and reconnect with other nearby field lines. This redirects their plasma load into the magnetosphere, opening the door to the solar wind and allowing it to reach Earth.

Earth's Magnetosphere behaves like a Sieve Solar wind entry at high latitudes. Image credit: AOES Medialab



Under certain circumstances this can drive ‘space weather’, generating spectacular aurorae, interrupting GPS signals and affecting terrestrial power systems.

In 2006, Cluster made the surprising discovery that huge, 40 000 km swirls of plasma along the boundary of the magnetosphere – the magnetopause – could allow the solar wind to enter, even when Earth’s magnetic field and the IMF are aligned.

These swirls were found at low, equatorial latitudes, where the magnetic fields were most closely aligned.

These giant vortices are driven by a process known as the Kelvin–Helmholtz (KH) effect, which can occur anywhere in nature when two adjacent flows slip past each other at different speeds.

Examples include waves whipped up by wind sliding across the surface of the ocean, or in atmospheric clouds.

 

read more ESA